34 research outputs found

    Applicability of the Threshold of Toxicological Concern (TTC) approach to cosmetics ā€“ preliminary analysis

    Get PDF
    This report describes the application of chemoinformatic methods to explore the applicability of the Threshold of Toxicological Concern (TTC) approach to cosmetic ingredients. For non-cancer endpoints, the most widely used TTC approach is the Cramer classification scheme, which categorises chemicals into three classes (I, II and III) depending on their expected level of concern for oral systemic toxicity (low, medium, high, respectively). The chemical space of the Munro non-cancer dataset was characterised to assess whether this underlying TTC dataset is representative of the ā€œworldā€ of cosmetic ingredients, as represented by the COSMOS Cosmetics Inventory. In addition, the commonly used Cramer-related Munro threshold values were applied to a toxicological dataset of cosmetic ingredients, the COSMOS TTC dataset, to assess the degree of protectiveness resulting from the application of the Cramer classification scheme. This analysis is considered preliminary, since the COSMOS TTC dataset and Cosmetics Inventory are subject to an ongoing process of extension and quality control within the COSMOS project. The results of this preliminary analysis show that the Munro dataset is broadly representative of the chemical space of cosmetics, although certain structural classes are missing, notably organometallics, silicon-containing compounds, and certain types of surfactants (non-ionic and cationic classes). Furthermore, compared with the Cosmetics Inventory, the Munro dataset has a higher prevalence of reactive chemicals and a lower prevalence of larger, long linear chain structures. The COSMOS TTC dataset, comprising repeat dose toxicity data for cosmetics ingredients, shows a good representation of the Cosmetics Inventory, both in terms of physicochemical property ranges, structural features and chemical use categories. Thus, this dataset is considered to be suitable for investigating the applicability of the TTC approach to cosmetics. The results of the toxicity data analysis revealed a number of cosmetic ingredients in Cramer Class I with No Observed Effect Level (NOEL) values lower than the Munro threshold of 3000 Āµg/kg bw/day. The prevalence of these ā€œfalse negativesā€ was less than 5%, which is the percentage expected by chance resulting from the use of the 5th percentile of cumulative probability distribution of NOELs in the derivation of TTC values. Furthermore, the majority of these false negatives do not arise when structural alerts for DNA-binding are used to identify potential genotoxicants, to which a lower TTC value of 0.0025 Āµg/kg bw/day is typically applied. Based on these preliminary results, it is concluded that the current TTC approach is broadly applicable to cosmetics, although a number of improvements can be made, through the quality control of the underlying TTC datasets, modest revisions / extensions of the Cramer classification scheme, and the development of explicit guidance on how to apply the TTC approach.JRC.I.5-Systems Toxicolog

    Threshold of Toxicological Concern - an update for non-genotoxic carcinogens

    Get PDF
    The Threshold of Toxicological Concern (TTC) concept can be applied to organic compounds with known chemical structure to derive a threshold for exposure below which a toxic effect on human health by the compound is not expected. The TTC concept distinguishes between carcinogens that may act as genotoxic and non-genotoxic compounds. A positive prediction of a genotoxic mode of action, either by structural alerts or experimental data, leads to the application of the threshold value for genotoxic compounds. Non-genotoxic substances are assigned to the TTC value of their respective Cramer class even though it is recognized that they could test positive in a rodent cancer bioassay. This study investigated the applicability of the Cramer classes specifically to provide adequate protection for non-genotoxic carcinogens. For this purpose, benchmark dose levels based on tumour incidence were compared with no observed effect levels (NOEL) derived from non-, pre- or neoplastic lesions. One key aspect was the categorization of compounds as non-genotoxic carcinogens. The recently finished CEFIC LRI project B18 classified the carcinogens of the CPDB as either non- or genotoxic compounds based on experimental or in silico data. A detailed consistency check resulted in a data set of 137 non-genotoxic organic compounds. For these 137 compounds, NOEL values were derived from high quality animal studies with oral exposure and chronic duration using well known repositories including RepDose, ToxRef and COSMOS DB. Further, an effective tumour dose (ETD10) was calculated and compared to the lower confidence limit on benchmark dose levels (BMDL10) derived by model averaging. Comparative analysis of NOEL/EDT10/BMDL10 values showed that potentially bioaccumulative compounds in humans, as well as steroids, which both belong to the exclusion categories, occur predominantly in region of the 5th percentiles of the distributions. Excluding these 25 compounds resulted in significantly higher, but comparable 5th percentile chronic NOEL and BMDL10 values, while the 5th percentile EDT10 value was slightly higher, but not statistically significant. The comparison of the obtained distributions of NOELs with the existing Cramer classes and their derived TTC values supports the application of Cramer class thresholds to all non genotoxic compounds, including non_genotoxic carcinogens

    Assessing the safety of cosmetic chemicals: Consideration of a flux decision tree to predict dermally delivered systemic dose for comparison with oral TTC (Threshold of Toxicological Concern)

    Get PDF
    AbstractThreshold of Toxicological Concern (TTC) aids assessment of human health risks from exposure to low levels of chemicals when toxicity data are limited. The objective here was to explore the potential refinement of exposure for applying the oral TTC to chemicals found in cosmetic products, for which there are limited dermal absorption data. A decision tree was constructed to estimate the dermally absorbed amount of chemical, based on typical skin exposure scenarios. Dermal absorption was calculated using an established predictive algorithm to derive the maximum skin flux adjusted to the actual ā€˜doseā€™ applied. The predicted systemic availability (assuming no local metabolism), can then be ranked against the oral TTC for the relevant structural class. The predictive approach has been evaluated by deriving the experimental/prediction ratio for systemic availability for 22 cosmetic chemical exposure scenarios. These emphasise that estimation of skin penetration may be challenging for penetration enhancing formulations, short application times with incomplete rinse-off, or significant metabolism. While there were a few exceptions, the experiment-to-prediction ratios mostly fell within a factor of 10 of the ideal value of 1. It can be concluded therefore, that the approach is fit-for-purpose when used as a screening and prioritisation tool

    Origin of the TTC values for compounds that are genotoxic and/or carcinogenic and an approach for their revaluation

    Get PDF
    The threshold of toxicological concern (TTC) approach is a resource-effective de minimismethod for the safety assessment of chemicals, based on distributional analysis of the results of a large number of toxicological studies. It is being increasingly used to screen and prioritise substances with low exposure for which there is little or no toxicological information. The first step in the approach is the identification of substances that may be DNA-reactive mutagens, to which the lowest TTC value is applied. This TTC value was based on analysis of the cancer potency database and involved a number of assumptions that no longer reflect the state-of-the-science and some of which were not as transparent as they could have been. Hence, review and updating of the database is proposed, using inclusion and exclusion criteria reflecting current knowledge. A strategy for the selection of appropriate substances for TTC determination, based on consideration of weight of evidence for genotoxicity and carcinogenicity is outlined. Identification of substances that are carcinogenic by a DNA-reactive mutagenicmode of action and those that clearly act by a non-genotoxic mode of action will enable the protectiveness to be determined of both the TTC for DNA-reactive mutagenicityand that applied by default to substances that may be carcinogenic but are unlikely to be DNA-reactive mutagens (i.e. for Cramer class I-III compounds). Critical to the application of the TTC approach to substances that are likely to be DNA-reactive mutagens is the reliability of the software tools used to identify such compounds. Current methods for this task are reviewed and recommendations made for their application

    The application of molecular modelling in the safety assessment of chemicals: A case study on ligand-dependent PPARĪ³ dysregulation.

    Get PDF
    The aim of this paper was to provide a proof of concept demonstrating that molecular modelling methodologies can be employed as a part of an integrated strategy to support toxicity prediction consistent with the mode of action/adverse outcome pathway (MoA/AOP) framework. To illustrate the role of molecular modelling in predictive toxicology, a case study was undertaken in which molecular modelling methodologies were employed to predict the activation of the peroxisome proliferator-activated nuclear receptor Ī³ (PPARĪ³) as a potential molecular initiating event (MIE) for liver steatosis. A stepwise procedure combining different in silico approaches (virtual screening based on docking and pharmacophore filtering, and molecular field analysis) was developed to screen for PPARĪ³ full agonists and to predict their transactivation activity (EC50). The performance metrics of the classification model to predict PPARĪ³ full agonists were balanced accuracy=81%, sensitivity=85% and specificity=76%. The 3D QSAR model developed to predict EC50 of PPARĪ³ full agonists had the following statistical parameters: q(2)cv=0.610, Nopt=7, SEPcv=0.505, r(2)pr=0.552. To support the linkage of PPARĪ³ agonism predictions to prosteatotic potential, molecular modelling was combined with independently performed mechanistic mining of available in vivo toxicity data followed by ToxPrint chemotypes analysis. The approaches investigated demonstrated a potential to predict the MIE, to facilitate the process of MoA/AOP elaboration, to increase the scientific confidence in AOP, and to become a basis for 3D chemotype development

    Thresholds of Toxicological Concern for Cosmetics-Related Substances: New Database, Thresholds, and Enrichment of Chemical Space

    Get PDF
    A new dataset of cosmetics-related chemicals for the Threshold of Toxicological Concern (TTC) approach has been compiled, comprising 552 chemicals with 219, 40, and 293 chemicals in Cramer Classes I, II, and III, respectively. Data were integrated and curated to create a database of No-/Lowest-Observed-Adverse-Effect Level (NOAEL/LOAEL) values, from which the final COSMOS TTC dataset was developed. Criteria for study inclusion and NOAEL decisions were defined, and rigorous quality control was performed for study details and assignment of Cramer classes. From the final COSMOS TTC dataset, human exposure thresholds of 42 and 7.9 Ī¼g/kg-bw/day were derived for Cramer Classes I and III, respectively. The size of Cramer Class II was insufficient for derivation of a TTC value. The COSMOS TTC dataset was then federated with the dataset of Munro and colleagues, previously published in 1996, after updating the latter using the quality control processes for this project. This federated dataset expands the chemical space and provides more robust thresholds. The 966 substances in the federated database comprise 245, 49 and 672 chemicals in Cramer Classes I, II and III, respectively. The corresponding TTC values of 46, 6.2 and 2.3 Ī¼g/kg-bw/day are broadly similar to those of the original Munro dataset

    QSAR Modeling: Where Have You Been? Where Are You Going To?

    Get PDF
    Quantitative Structure-Activity Relationship modeling is one of the major computational tools employed in medicinal chemistry. However, throughout its entire history it has drawn both praise and criticism concerning its reliability, limitations, successes, and failures. In this paper, we discuss: (i) the development and evolution of QSAR; (ii) the current trends, unsolved problems, and pressing challenges; and (iii) several novel and emerging applications of QSAR modeling. Throughout this discussion, we provide guidelines for QSAR development, validation, and application, which are summarized in best practices for building rigorously validated and externally predictive QSAR models. We hope that this Perspective will help communications between computational and experimental chemists towards collaborative development and use of QSAR models. We also believe that the guidelines presented here will help journal editors and reviewers apply more stringent scientific standards to manuscripts reporting new QSAR studies, as well as encourage the use of high quality, validated QSARs for regulatory decision making

    Read-across at the Crossroad of Chemoinformatics and Regulatory Science

    No full text
    Dr. Yang worked at the National Center for Computational Toxicolog
    corecore